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Abstract 

Background: Non-alcoholic fatty liver disease (NAFLD) is a common type of liver disease and is showing a 

high prevalence worldwide. The liver fibrosis caused by NAFLD increase the risk of extrahepatic diseases. 

Lung cancer is one of the most common cancers causing death in the world, with lung squamous cell carcinoma 

(LUSC) as its main tissue type. Previous clinical cohort studies suggest NAFLD as a risk factor for lung cancer, 

but the exact mechanism is unclear. 

Aims: to explore the shared genes between NAFLD and LUSC from the transcriptome with bioinformatics 

methods, and to verify the in-situ expression of our genes and the relationship and communication with cells. 

Methods: First, we use weighted gene co-expression network analysis (WGCNA) and Deseq2 analysis to 

identify the differentially expressed core intersection genes driving the disease; second, we construct a PPI 

reciprocal network to identify hub genes; then perform prognostic and immune analysis at the bulk-RNA level, 

use single-cell sequencing datasets to validate our findings on subdivided cell subpopulations, then use spatial 

transcriptome datasets to explain the in situ expression of our hub genes; finally, we construct a ceRNA 

regulatory network to demonstrate the reciprocal relationships between molecules. 

Results: We identified 11 genes that drive disease progression in patients with NAFLD and LUSC, GO and 

KEGG revealing their involvement in cancer first-off pathways, and immune and prognostic analyses revealing 

that our TOP3 (BRCA1, CAV1, CDKN1A) genes are associated with prognosis and immune cells. Single cell 

analysis results demonstrate that our genes are highly expressed in malignant and stromal cells and involved in 
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cell-to-cell interactions, where spatial transcriptome analysis results show that our gene set scores are highly 

expressed in malignant and cancer-associated cells, and imaging results also demonstrate that the core gene 

CDKN1A is highly expressed in basal cells (tumor cells). The final regulatory network demonstrates the 

regulatory network between miRNA-lncRNA-Hub gene. 

Conclusions: our work identifies the function of shared genes CDKN1A, BRCA1, and CAV1 in squamous lung 

cancer, such as those between NAFLD and LUSC. In this investigation, novel markers for squamous lung 

cancer identified in this investigation. 

Keywords: Multidimensional integrated analysis; Non-alcoholic fatty liver disease; Spatial transcriptome; 

CDKN1A; Lung squamous cell carcinoma 

Abbreviations NAFLD: Non-Alcoholic Fatty Liver Disease; LUSC: Lung Squamous Cell Carcinoma; TCGA: 

The Cancer Genome Atlas; HR: Hazard Ratio; GO: Gene Ontology; WGCNA: Weighted Gene Co-Expression 

Network Analysis 

 

Introduction 

Non-Alcoholic Fatty Liver Disease (NAFLD) is a type of liver disease that is linked to insulin resistance, 

obesity, and the metabolic syndrome [1]. NAFLD is significantly associated with obesity [2], with an estimated 

frequency of 25% in the NAFLD group and 3% to 5% in Non-Alcoholic Steatohepatitis (NASH) [1,3,4]. 

Hepatic steatosis happens when the fat level of hepatocytes surpasses 5%, resulting in cell death, inflammation, 

and fibrosis, and hence NASH [5-7]. As NASH worsens, liver fibrosis occurs, causing the liver to stiffen and 

become functionally compromised [8]. Furthermore, advanced fibrosis is linked to overall mortality and the 

individuals with advanced fibrosis dying at three times the risk of people without liver disease. Thus, the fibrosis 

stage, rather than the steatosis stage, is directly related to total mortality in NAFLD patients [9]. Lung cancer is 

a major cause of cancer-related mortality. Non-Small Cell Lung Cancer (NSCLC) accounts for 85% of all lung 

cancers. The most frequent type of malignant tissue is squamous cell carcinoma of the lung, which accounts for 

50% of all NSCLC cases [10,11]. Squamous lung tumors are frequently seen in the center of the lung, often 

begin in the proximal bronchi, and are more prone to invade big blood arteries [12,13]. Mutations for targeted 

therapy are uncommon in squamous lung cancer patients [14,15]. As a result, all aspects of a patient's clinical 

history, disease, and tumor features must be taken into account to guarantee that they are treated effectively and 

that the patient's prognosis is improved. This is especially crucial in the first-line therapy of individuals with 

advanced illness [16,17]. Previous studies have revealed an association between NAFLD and extrahepatic 

cancers. Results of a cohort study reveal that NAFLD increases patients' risk of developing lung cancer by 30% 

[18]. Several studies in large cohorts have also suggested an increased risk of lung cancer in patients with 

NAFLD (HR, 1.38; 95% CI, 1.03-1.84) [19,20]. Most of the current studies are mainly clinical studies and few 

have explored the regulatory mechanisms between these two diseases in terms of molecular mechanisms. 

Therefore, we use bioinformatics approaches to explore the shared genes between the two starting from the 

transcriptome, single cell sequencing allows us to better explore the patient's tumor microenvironment [21], and 

spatial transcriptome allows us to understand the in-situ expression of genes [22], using single cell combined 

with spatial transcriptome approaches to verify the in situ expression of our genes and the relationship and 

communication with cells from different dimensions and precision. 
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Materials and Methods 

Data collection and cleaning 

The TCGA database (https://portal.gdc.cancer.gov/) was used to download transcriptome data from LUSC 

patients (n = 550) in both count and FPKM formats, and we combined clinical data from pertinent tumor and 

normal samples for in-depth analysis. The dataset of NAFLD expression data was taken from dataset GSE49541 

under the Gene Expression Omnibus (GEO) database, which covers 72 samples and patient staging includes 

advanced (fibrosis stage 3-4) and moderate (fibrosis stage 0-1). We first acquired the expression profiles, then 

extracted the transcripts with gene type of protein coding as protein coding genes to obtain the protein coding 

gene expression profiles, and then obtained the transformed expression profiles, and deleted the NA values of 

the samples, before using the impute.knn function of the R package impute to fill in the missing values. To fill 

in the missing data, the number of neighbours was set to K = 10. In addition, a log2 transformation was done on 

the data to create the data matrix for analysis. 

Identification of differentially expressed genes and WGCNA analysis 

To extract the differential genes between the TCGA tumor group and the normal group, we utilized the R 

package DESeq2 (Differential gene expression analysis based on the negative binomial distribution) [23]. In 

addition, we used the R package limma (linear models for microarray data) to run a difference analysis on the 

GEO dataset to determine which genes differed between the comparison and control groups for different stage 

of liver fibrosis [24]. We did Weighted Gene Co-Expression Network Analysis (WGCNA) [25] analysis of the 

expression profile matrix of patients with LUSC and patients with liver fibrosis using Sanger Box 3.0 [26] to 

find the most relevant modular genes for clinical characteristics. The soft threshold for the TCGA dataset was 

set to 8 and for the GEO dataset to 6, and we also plotted the connection between clinical and modular genes. 

Crossover gene screening and discovery of hub genes 

We plotted the WGCNA analysis and the Venn diagram of gene differential expression results using a 

JavaScript ""jvenn"" script [27], and we used the STRING (functional protein association networks) website 

(https://www.string-db.org/) to construct protein interaction networks of intersecting genes, and we used 

Cytoscape (https://cytoscape.org/) software to find the TOP3 pivotal genes. We used GO annotations of genes 

from the R package org for gene set functional enrichment analysis. We used GO annotations of genes from the 

R package org for gene set functional enrichment analysis.org.Hs.eg.db was utilized as the background set, 

genes were mapped to the background set, and enrichment analysis was performed using the R package 

clusterProfiler [28] to obtain gene set enrichment results. The lowest gene set was 5, the maximum gene set was 

5000, the P value was 0.05, and the FDR was 0.25. 

Prognostic and immunological analysis of Hub genes 

We plotted KaplanMeier survival curves using the R package survival. In addition, using the R package 

ESTIMATE [29], we computed the stromal score, immunological score, and Estimate score of patients with 

squamous lung cancer to better understand the tumor microenvironment. We collected clinical data from 

squamous lung cancer patients, using R software to assess variations in gene expression at different clinical 

sample phases, did difference analysis between two groups using an unpaired Student's t-test, and compared 

multiple sample groups using ANOVA. To investigate the link between core genes and immune cells, the EPIC 

and MCPcount algorithms were utilized [30,31]. 

 

https://portal.gdc.cancer.gov/
https://www.string-db.org/
https://cytoscape.org/
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Analysis of diversity data of hub genes in single cells 

We chose the dataset GSE117570 (N = 4) from the TISCH2 [32] website database to input our core genes to 

investigate the expression of core genes in the tumor microenvironment of lung cancer patients, and performed 

analyses such as transcription factors and cellular communication. In the supplemental file, we include the 

differentially expressed genes from the GEO single-cell dataset as well as the META annotation file information 

(which includes cell type annotations as well as the results of downscaling clustering). 

Spatial transcriptome analysis (Sequencing-based) 

The 10X GENOMICS website (https://www.10xgenomics.com/cn/resources/datasets/human-lung-

cancer-ffpe-2-standard) provided us with the Human Lung Cancer (FFPE) Spatial Gene Expression Dataset by 

Space Ranger 2.0.0. The supplemental file contains the Spatial Gene Expression Dataset by Space Ranger 2.0.0, 

which includes the corresponding immunohistochemistry images as well as the corresponding gene expression 

and location in space. We processed the spatial transcriptomics data with the R package Seurat [33] and 

visualized it with ggplot2. We normalized the data with the SCTransform function, ran the RunPCA function to 

reduce the dimensionality, selected 1:15 principal components, and visualized the expression of the core genes 

at different locations on the sliced tissue with Dimplot. 

Finally, we used the AddModuleScore scoring method to map the core genes as gene sets to our spatial 

transcriptome data, and the cell type clustering of joint single cell and spatial transcriptome inferred spatial 

transcriptome was mapped using the MIAscoring method [34]. 

Analysis of spatial datasets (Imaging-based) 

We got healthy slices of non-small cell lung cancer tissue from (https://nanostring.com/products), a dataset 

developed using the Nanostring CosMx Spatial Molecular Imager (SMI), and used the seurat website to display 

the spatial expression of our Hub genes. 

Building CERNA Network 

Using the Perl (https://strawberryperl.com/) programming language, we generated text files of the reciprocal 

network, which we then imported into cytoscape and altered to obtain the ceRNA regulatory network, which 

included the four core genes and their related miRNAs and lncRNAs. The database files can be found in the 

supplemental file. 

Statistical analysis 

All statistical analyses included were done in R language version 4.1.1(https://www.r-project.org/) and P value< 

0.05 for different comparisons were considered statistically significant. 

 

Results 

Identification of differentially expressed shared genes between patients with NAFLD and lung squamous 

carcinoma 

We obtained the most relevant black module for advanced liver fibrosis in NAFLD patients and the most 

relevant turquoise module for lung cancer tumor samples using the WGCNA analysis method (Figure 1B and 

H). (Figure 1A, C, F and G) depicts the soft thresholds related with module correlation. We identified the 

differentially expressed genes that were upregulated and downregulated in the two datasets by examining the 

differential expression of the two datasets (Figure 1D and E). 

https://www.10xgenomics.com/cn/resources/datasets/human-lung-cancer-ffpe-2-standard
https://www.10xgenomics.com/cn/resources/datasets/human-lung-cancer-ffpe-2-standard
https://nanostring.com/products
https://strawberryperl.com/
https://www.r-project.org/
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Figure 1: Identification of differentially expressed genes and clinical trait-related module genes. (A, B) 

WGCNA analysis of GEO dataset with soft thresholding. (C) Correlation of black module with grade of liver 

fibrosis. (D, E) Identification of differentially expressed genes in GEO and TCGA datasets. (F, H) WGCNA 

analysis of TCGA dataset with soft thresholding. (G) Correlation of modules with tumor traits. 

 

Identification and biological pathway enrichment analysis of Hub genes 

Using Venn diagrams, we found 11 common genes in the two disorders by intersecting the findings of WGCNA 

and differential expression analyses (Figure 2A). The cytoscape software study revealed the hub genes of TO3 

by establishing the PPI protein interaction network, with the CDKN1A gene contributing the most to the 

network (Figure 2B and C). We analyzed our data using the GO KEGG approach to elucidate the biological 

pathways in which our common genes are involved and enriched. GO results showed that most genes were 

enriched in cell cycle checkpoint (Figure 2E), KEGG results were enriched in Focal adhesion, and MicroRNAs 

in cancer associated pathways (Figure 2D and F). 
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Figure 2: Identification and enrichment analysis of Hub genes. (A) Wayne diagram showing intersection genes. 

(B, C) Protein Interaction Network of Intersecting Genes. (D, F) KEGG analysis of the enrichment pathway of 

crossover genes. (E) GO analysis of the enrichment pathway of crossover genes. 

 

Immunological and prognostic correlation analysis of hub genes 

The KM curves show the prognosis analysis of core genes, where core genes were important in differentially 

expressed subgroups, such as CDKN1A, CAV1, and SOX4 (Figure 3A). The Estimate method revealed a 

substantial positive association between CDKN1A expression and matrix and EstimateScore, but not with 

immunological score (Figure 3B). As indicated in the image, Epic and McpCount analyses revealed a 

favourable link between the CDKN1A gene and immune cells. CDKN1A was most highly correlated with 

Endothelia cells, CAFS, and CD4 T (Figure 3C and D). We also explored the mutational profile of the amino 

acid structural domain of CDKN1A in relation to the epigenetic modifications M6A, M5C, and M1A (Figure 

3E and H). CDKN1A is differentially expressed in clinical samples with different staging T, N (Figure 3F and 

G). 
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Figure 3: Prognostic and immune correlation analysis of core genes. (A) Prognostic analysis of core genes. (B) 

Correlation of CDKN1A with tumor microenvironment scores. (C, D) Correlation of CDKN1A with immune 

cells. (E, H) Epigenetic and SNP profile of CDKN1A in lung cancer patients. (F, G) Correlation of CDKN1A 

expression with clinical staging. 

 

Research and exploration of Hub genes at the single cell level 

We chose the dataset GSE117570 from the TISCH2 database, which was downscaled and grouped into 16 

clusters (Figure 4A). UMAP plots highlight the primary cell kinds that are the center of attention, such as 

Malignant cells, Epithelial cells, epithelial cells, and so on (Figure 4B), and bar and pie charts illustrate the cell 
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types and contents in 4 distinct patients, which helps to further investigate the tumor microenvironment of 

patients (Figure 4C and D). We further mapped our four Hub genes to single adult cell surfaces and 

investigated their differential expression in other cell populations, finding that CDKN1A was considerably 

differentially expressed in Th2, malignant, NK, and Plasma cells from different patients (Figure 4I). And it was 

expressed more in diverse cell types than the other genes (Figure 4E-H). Because CDKN1A is linked to the P53 

pathway, we used GSEA to visualize the extent of enrichment of P53, DNA REPAIR, and other pathways at the 

single cell level (Figure 5A). The heat map depicts the relationship between various cellular taxa. We chose 

malignant cells and epithelial cells for cellular communication analysis and transcription factor identification 

because the CDKN1A gene is significantly expressed in both. The eggshell and reciprocal network diagrams 

proved connection between these two cell classes (Figure 5B), and the heat map detailed the ligands and 

receptors of distinct epithelial cells with different cells, with APP-CD74 being the most prominent (Figure 5C). 

(Figure 5D and E) demonstrates the identification of transcription factors of epithelial C12 and malignant cell 

C0 cluster. 
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Figure 4: Exploration of core gene expression based on single cell level. (A, B) Reduced dimensional clustering 

and annotation of cell populations. (C, D) Statistical overview of cell composition of 4 patient samples. (E, F, G, 

H) Expression of CAV1, BRCA1, CDKN1A, SOX4 was demonstrated. (E, H) Epigenetic and SNP profile of 

CDKN1A in lung cancer patients. (I) Significance statistics of the differences of core genes in different samples. 
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Figure 5: Cell Communication Analysis. (A) Visualization of disease-related pathways in single-cell datasets. 

(B) Analysis of the communication strength and correlation between different cell types demonstrated. (C) 

Ligand-receptor interactions between epithelial cells and different cells. (D, E) Identification of transcription 

factors in different cell subpopulations. 

 

Analysis of the joint spatial transcriptome 

We chose tissue sections from patients with non-small cell lung cancer and did a process analysis using the 

seurat program because the analysis of single cells lost the spatial dimensional analysis (Figure 6A). First, we 

checked the spatial transcriptome data for quality (Figure 6B), and then we visualized the four core genes in the 
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spatial dimension by descending the PCA, dividing the sectioned tissue into 12 subgroups (Figure 6C), and 

mapping the in-situ expression of genes onto the sections using the accompanying gene expression coordinates 

(Figure 6D). Among the MIA inference methods, the background genes of single cells and the background 

genes of the spatial transcriptome were examined using hypergeometric distribution, and then the cell type 

overlap of the spatial transcriptome was inferred, where the brown color in the red legend indicates enrichment 

(significantly high overlap); The blue color indicates depletion (significantly lower overlap), and the in situ 

expression of the combined previous genes shows that CDKN1A and SOX4, the majority of CAV1 are enriched 

in subpopulation 8,11, and the subpopulation and malignant and epithelial cells are highly overlapping, which to 

some extent validates our findings at the single cell level (Figure 6E). Finally, using the AddModuleScore 

function to score our genes as a set mapped to the spatial level, it can be seen that our gene set is higher in 

epithelial and malignant cells compared to other cells (Figure 6F and G). 
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Figure 6: Exploring the expression of genes based on spatial transcriptome. (A) Histological section of a patient 

with squamous cell carcinoma of the lung. (B, C) Data quality control and dimensionality reduction clustering. 

(D) Spatial expression of hub genes. (E) Cell type inference for single cell transcriptome vs. spatial 

transcriptome. (F, G) Scores of Hub gene sets in different cell types and subpopulations. 

 

Analysis of spatial datasets (image-based) and construction of ceRNA networks (competing endogenous 

RNAs) 

The imaging images we utilized were generated by the Nanostring CosMx spatial molecular imager, and the 

descending clustering map of tissues is shown in (Figure 7A and B). The basal cell populations are defined as 

tumor cells, which are seen to be spatially tightly organized, using the Crop () function. After zooming in, we 
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visualized the core genes, which can be found to be mostly located in the basal cells, i.e., tumor cells, which also 

validates the findings on single cell and spatially organized sections, respectively (Figure 7C-E). Finally, we 

constructed the lncRNA and miRNA regulatory networks associated with the core genes based on the prediction 

results of database spongeScan, TargetScan, miRDB, etc. after visualization by Cytoscape (Figure 8). 

 

 

Figure 7: Exploration of hub gene expression based on spatial imaging images. (A, B) Cell type annotation and 

subgrouping of imaging images. (C, D, E) The expression of Hub genes in different cells is shown. 
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Figure 8: Building a ceRNA (miRNA-lncRNA-mRNA) regulatory network. 

 

 

Discussion 

With a prevalence of 13.48-31.79%, NAFLD is one of the most frequent liver diseases in individuals [35]. 

NAFLD has been shown to cause an inflammatory infiltrate in which multiple T cell subsets are involved in 

NAFLD pathogenesis, and previous studies have found higher levels of CD4+ T and CD8+ T cell infiltration in 

peripheral blood in patients with non-alcoholic steatohepatitis [7]. NAFLD has also been shown to disrupt the 

regional immune microenvironment, which may affect cancer progression. In NSCLC patients [36], hepatic 

steatosis is also seen as an independent predictor of liver metastases [37]. In this study, we first identified genes 

that were differentially expressed in NAFLD and LUSC patients, and then used the WGCNA method to screen 

the most relevant modular genes for both diseases, yielding 11 shared genes that were not only differentially 

expressed in both datasets but also most relevant to the disease's phenotype. Our gene collection is closely 

related to the focal adhesion pathway, which has previously been linked to cancer aggressiveness, according to 

GO and KEGG analyses [38]. We used protein interaction networks to identify the genes with the highest 

contribution between them CDKN1A, the tumor suppressor protein p53 tightly regulates the expression of this 

gene, which mediates a p53-dependent cell cycle G1 phase block in response to diverse stress stimuli. Recent 

research has revealed that CDKN1A is an autophagic fibroblast expression biomarker of senescence, and that it 
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plays an important role in the response to cisplatin-pemetrexed combinations in KRAS-mutated lung cancer 

cases, with a high potential biomarker value [39,40]. Furthermore, CDKN1A (p21) expression levels were 

significantly elevated in human NAFLD liver samples, and its involvement in the p53-mediated signaling 

pathway contributed to the progression of human NAFLD [41], as well as CDKN1A overexpression induced 

apoptosis and cell cycle arrest in lung cancer cells [42], where the CDKN1A SNP was associated with the 

development of hepatitis [43]. BRCA1 predicts clinical outcomes of chemotherapy in patients with non-small 

cell lung cancer [44]. CAV1 can be targeted by drugs in non-small cell lung cancer [45]. 

Based on bulk-RNA data, we performed a prognostic, clinical immune correlation analysis of CDKN1A. 

CDKN1A was positively correlated with stromal cells, T cells, which is consistent with previous studies. Each 

patient's tumor microenvironment is different, and finding a marker gene with a high confidence level is crucial, 

as it can improve the effectiveness of immunotherapy in patients. To further investigate whether our hub gene 

has a corresponding marker potential, we analyzed the gene expression values of CDKN1A in different cells in 

different samples by single cell sequencing. CDKN1A was significantly differentially expressed in Th2, M2 

macrophages, and NK cells of the tumor microenvironment. and also, in malignant cells. We visualized the 

expression of P53, fatty acid metabolism, and DNA repair pathways in single cells to better understand the role 

of pathways associated with NAFLD in lung cancer patients, and we investigated the cellular communication 

between malignant cells and stromal cells with associated transcription factors, finding that the ligand receptor 

APP-CD74 was more relevant. We visualized our hub genes using the spatial transcriptome; the spatial location 

can help us better understand our in-situ expression in space; we inferred the cell type of the spatial 

transcriptome using the MIA approach; and we mapped the gene set scores to different cell types and clusters 

using the AddModuleScore scoring method; stromal and malignant cells scored higher, further validating our 

findings on top of single cells. 

Finally, by constructing ceRNA regulatory networks, we can further understand the progression and regulation 

of our core genes on disease processes. Ferroptosis is a cell death caused by lipid peroxidation, and CDKN1A is 

wonderfully linked to the pathway of iron death. By promoting the expression of CDKN1A, P53 prevents iron 

death [46]. Previous studies have demonstrated that Ferroptosis is associated with the progression of NAFLD 

disease [47] and that Ferroptosis is closely associated with the development of non-small cell lung cancer. We 

therefore hypothesized that Ferroptosis as a process likely mediates disease progression in patients with both 

NAFLD and lung cancer, a conclusion that requires more in-depth ex vivo experiments to verify the plausibility. 

Our study has several limitations, the first being that the very small dataset available for the association of liver 

fibrosis in NAFLD disease prevents us from validating our findings in more depth in NAFLD, and these results 

should subsequently be confirmed in depth in a larger study with a large sample size, and although we validated 

our in-situ expression in the spatial dimension, the hub gene and immune cell interactions are still worth 

investigating. 

 

Conclusion 

Our work identifies the function of shared genes CDKN1A, BRCA1, and CAV1 in squamous lung cancer, such 

as those between NAFLD and LUSC. In this investigation, new biomarkers for both were found. 
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